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In this talk | provide an overview of the modeling of vertical and lateral
velocity gradients that can be sources of systematic error in Ocean Bottom
Cable first-break positioning algorithms. The mathematics of the solutions |
propose are detailed in the paper accompanying this overview. My thesis is
simple. By modeling sources of systematic error and by compensating for
random first-break quality with a large number of observations, first-break
coordinates can be as accurate as acoustics at less cost.



Orthogonal Shooting Style

By way of orientation | first show a schematic of the orthogonal shooting
style in OBC. There are cables with dual sensor detectors on the bottom
connected to a recording and processing vessel shown in the middle. The
shooting vessel sailing perpendicularly to the swath is on the left. This
orthogonal style has certain geophysical and geodetic advantages, but in-
line shooting is also possible.



Shooting Vessel with Towed Source

This picture shows the stern of a shooting vessel towing a source array.
Notice the GPS antenna positioning the source array.



Stern of Cable-Laying

This picture is the back deck of a cable laying vessel showing the "squirter"
at center stern for deploying the cables.



Real-Data Swath Subset
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This graphic shows a subset of a real-data swath that is extensively
analyzed in this paper. There are just 16 detectors that are coupled with
acoustic sensors shown as circles and 2500 orthogonally-fired shots shown
as plus signs. Notice that this swath was shot around obstructions, an
excellent use of OBC.



Methods of Positioning OBC Detectors

1 Drop positions (inexpensive but imprecise)
2 Acoustics (expensive but precise)

3 First breaks (inexpensive and precise)

« Combination of first breaks and acoustics

Source positioning in OBC is similar in technique and quality to source
positioning in deep-water streamer surveys. It basically consists of GPS
antennas on the source array. On the other hand, detector positioning
techniques are less-widely standardized. Three techniques are common in
the industry. (1) Recording and using the drop coordinates of the detectors.
This is inexpensive, but often imprecise. (2) Deploying high-frequency
acoustic sensors attached to all or some of the detectors and positioned by a
“pinging” survey independent of the seismic survey. This technique is
expensive and time consuming, but, properly executed, can be precise. Or
(3) using multiple occasions of the onset of seismic energy (called first
breaks) as surveying observations in a positioning algorithm. This technique
is inexpensive because the data, personnel and software are already on the
vessel to reposition the swath immediately after shooting. Because we have
so many first-break picks, it can be very precise as the laws of statistical
error cancellation confirm. A combination of first breaks and acoustics is
also possible.



Acoustic Error Sources

Detector depth
Velocity of propagation
Inadequate number of pings

Inadequate geometry
Instrumental delay
Surface “ghosts”
Vessel noise

Muddy bottoms

In analyses that follow, | compare acoustic and first-break results. So it is
appropriate to overview some of the significant error sources associated with
each of these systems. Although acoustics provide a precise observable
with low random error, positions can be systematically affected by incorrect
detector depths for computing the slant range correction, by an incorrect
knowledge of the velocity of acoustic propagation in water (especially due to
thermal layering), by pinging too few times or in bad geometry or both, by
instrumental delay, by multi-path (specifically surface "ghosts"), by interfering
vessel noise and by muddy bottoms that mask the signal.



First-Break Error Sources

Random error (2 - 6 ms per pick)
Source array dimensions and orientation
Instrumental delay

Definition of energy onset

Vertical velocity gradient (water &
refractors)

Lateral velocity gradient
Anomalous near-surface geology

On the other hand, first-break errors sources are a crude observable that
may be good only to 3 to 9 meters or worse in a random sense, but we have
a lot of them. Given source-array dimensions and pick azimuth, simple
programming can determine which gun at what coordinates generated the
onset of energy. Instrumental delay is also an issue. Different first-break
pickers may have different mathematical definitions of the onset of seismic
energy. | will explain in a moment what | mean by vertical and lateral
velocity gradients. A complex near-surface geology can be the toughest of
all, when it occurs. In this talk and in the accompanying paper | offer
compensations for all these sources of first-break positioning error.



Vertical Velocity Gradient
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This graphic explains a vertical gradient. It shows a single source event and
the many paths the seismic energy may take to arrive first at each detector.
Some detectors will see the energy first directly through the water. But
because the sedimentary layers may have velocities that increase with
depth, the first break may arrive through one or more of these refractive
layers. Our objective is to use all this information in one automated
positioning algorithm.



Offset versus Pick Time
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For the swath subset already seen, this graphic shows all pick offsets in
meters on the Y axis plotted against all pick travel times in milliseconds
before repositioning. Offsets are defined as the Pythagorean distance
between the source and drop coordinates. The pick times are our
observations. There are 23,000 of them.



Vertical-Gradient Polynomial
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Modeling the vertical gradient is accomplished by fitting these data with a
polynomial of order sufficient to flatten the residuals. Such a polynomial is
shown in this graphic. Notice that the polynomial does not cross the origin.
The Y intercept at zero pick time absorbs two of the error sources previously
mentioned, namely, instrumental delay and the definition of the onset of
energy in the first-break picker.



Real-Data, First-Order Residual Plot
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A residual is an important concept in geodetic adjustment theory. A residual
is the C-0O, the computed minus the observed. In this case it is the
computed Pythagorean distance (or offset) for a given source-detector pair
minus the distance corresponding to the related pick time substituted into the
best fitting polynomial, in other words, the picks less the profile. This graphic
is a residual plot. Residuals in meters on the Y axis are plotted against pick
times in milliseconds on the X axis. A first-order, linear polynomial was used
to generate this plot. In other words, the vertical gradient is not modeled.
The trend as a function of pick time is obvious. Variation in the velocity of
propagation as a function of pick time and depth of refractor, can be implied
from this plot. Our objective is to flatten the residual plot.



Real-Data, Fifth-Order Residual Plot
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This is accomplished with a fifth-order polynomial to produce this graphic.
Residuals are now zero mean over all offsets. Some outliers are shown.
They can now be easily distinguished from the good data and rejected. The
first differential of the best-fitting polynomial provides an equation of average
velocity as a function of pick time. In other words, the vertical gradient is
modeled.



Omega Residuals without Pick Rejection
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This residual plots from Western's Omega processing system (and the next
slide, too) show another prospect with poorer-quality picks. No outlier
rejection is applied in this slide. Outlier rejection is applied in the next slide.
Although it is hard to read, residuals on the Y axis span approximately
plus/minus 700 meters (this slide) and plus/minus 100 meters (next slide). It
is obvious that pick rejection and a third-order vertical polynomial clean up
the data on the next slide, now centered about zero for all offsets. Notice
that some complex, near-surface geology is exhibited in the near offsets on
the next slide, with the far offsets behaving much better through the deeper
travel paths.
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Omega Residuals with Pick Rejection
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A lateral (or horizontal) velocity gradient is a variation in velocity as a
function of position in a prospect. Different than anisotropy, it may be
uniform in all directions at a specific point, but vary over the entire prospect.
A lateral gradient behaves like scale factor in what cartographers refer to as
a conformal map projection. It may be caused, for example, by a greater
compaction of the recent sedimentation as one moves farther offshore.
Since the refracted energy used in OBC first-break positioning primarily
travels through the recent sedimentary, layers, a lateral gradient may
sometimes be a factor in positioning results. A simple least-squares
algorithm will give erroneous results in the presence of a lateral gradient,
with coordinates biased in the direction of the gradient.
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Simulated Lateral Velocity Gradient
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This graphic shows a simulated lateral gradient. It's linear, relatively mild
and all in the Y coordinate. Since the global vertical velocity trend has
already been removed by the vertical profile, this gradient appears as
numbers near unity, like the scale factors on a map.
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Simulated-Data Residual Plot
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This graphic is a residual plot of synthetic data created using the lateral
gradient on the previous slide. The simulator models direct water arrivals
and three distinct refractors that produce a vertical gradient. A normally
distributed random error of 4 milliseconds (one sigma) is added to the
simulated picks. The picks are then rounded to the nearest 4 milliseconds to
emulate a commonly-used sampling interval that produces excellent
positioning results. The effect of the vertical gradient is obvious in this
graphic, which was computed with a linear vertical profile. Since the velocity
in each refractor is constant throughout its thickness in the simulator, one
refractor “break” is quite distinct. This sometimes occurs similarly in nature.
These data will be visited again in the comparisons that follow.
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Real-Data Swath Subset
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Now we return to this real-data example.
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Real-Data Computed Lateral-Velocity
Gradient
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This graphic shows the lateral gradient computed from the real data prospect
of the previous slide. It is shown as a quadratic surface, a two-dimensional
polynomial in X and Y coordinates. The mathematics for computing this
surface are derived in the accompanying paper. Notice the gradient from
north-west to south-east, the direction of this swath subset. The peaks in
the north-east and south-west are artifacts of extrapolating the quadratic
surface into territory unconstrained by real data.
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Coordinates
and Lateral
Velocity
Gradient
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Coordinates

Compute Vertical Gradient
Compute Multiple Local Blocks
Containing Coordinates of Detectors
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Report Coordinates
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Compute Common Block Containing
Coefficients of Lateral Velocity Gradient

Observations

This graphic is a flow diagram of the algorithm | call Helmert because it uses
the geodetic adjustment technique of Helmert-blocking for computational
efficiency. We start with our picks and our nominal coordinates. The global
vertical gradient for all picks in the entire swath is computed as previously
described. Then, in a simultaneous, network adjustment of all data, the
coefficients of the lateral gradient are computed. Using some intermediate
matrix products, the coordinates of all detectors are computed. If
convergence to some pre-defined tolerance is achieved, we are done. If not,
the nominal coordinates and the coefficients of the lateral gradient are
updated and iteration continues until convergence.



Verification of Positioning Algorithm

1 Comparison with truth (synthetic data)
2 Comparison with acoustics (real data)

3 Data splitting into independent data
samples (real or synthetic data)
- Randomly over entire offset range
- Near offsets versus far offsets

We can verify the efficacy of this approach in three ways: by comparison
with truth using synthetic data, by comparison with acoustics using real data,
and by splitting the picks into independent samples and comparing results.
Such splits can be made randomly over the entire offset range or by dividing
on offset into nears and fars. Random splits always agree extremely well.
Offset splits are a greater challenge that have important implications for
dealing with an anomalous near-surface geology.
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Algorithms Tested

1 Simple least squares (LS) with linear
vertical profile

2 Simple least squares (LS) with higher-
order vertical profile

3 Complex least squares (Helmert) with
both higher-order vertical profile and
quadratic lateral gradient

| will show all these comparisons for three algorithms: simple least squares
with a linear vertical profile only, simple least squares with a higher-order
vertical profile only, and the Helmert algorithm that models both the vertical

and lateral gradients.
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Simulated-Data Comparisons with Truth
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This bar chart and the next are reproduced as numerical tables with more
information in the paper for closer examination at your leisure. Comparisons
of synthetic data with the truth are first and comparisons of real data with
acoustics are next. Split data comparisons on offset are depicted by the
fourth pair of bars for each algorithm. On this slide notice that the LS
algorithms without the lateral feature have trouble with AY shown in maroon.
This happens to be where all the lateral gradient is programmed in this
synthetic data set. Notice that modeling the vertical gradient in the middle
LS algorithm provides only marginal benefit. This is a consequence of the
balanced geometry provided by orthogonal shooting. The benefit becomes
more pronounced with in-line shooting. Notice that the Helmert algorithm
nails the truth over all offset ranges and also in comparison between the
nears and the fars.



Real-Data Comparisons with Acoustics
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On this slide notice that the LS algorithms have trouble with both AX and AY
coordinates when compared with acoustics, although the near offsets
perform much better than the far offsets. On the other hand, the Helmert
algorithm compares at the 1 to 2 meter level over all offsets with acoustics.
The Helmert nears and fars compare at about one meter or less, better than
any comparison with acoustics directly. These results suggest a small in-line
bias in the acoustic data. The paper details reasons having to do with
delays in the GPS system why this may be so. | encourage you to examine
the tables and the accompanying commentary more closely in the paper.



Benefits of Modeling Velocity Gradients

Better fit to real-world geology
Decrease predicted error of resulting coordinates

Better rejection of outliers

Simultaneous processing of direct and refracted
arrivals without human intervention

Widest possible pick offset range processed

“Average out” positioning effects of near-surface
geological anomalies

In conclusion, | list some of the benefits of modeling velocity gradients.
Vertical and lateral velocity gradients are a reality in nature. Explicitly
modeling them in the positioning algorithm better fits the geology and
decreases coordinate predicted error. Outlier rejection is facilitated. Direct
and refracted arrivals are processed together in one adjustment without
human intervention. Consequently, the widest possible pick offset range
consistent with balanced geometry can be successfully processed. When
we are confident that near and far offsets produce statistically-equivalent
results we have a strategy for dealing with near-surface geological
anomalies. By processing over, through, under and around such anomalies
we stand our best chance of "averaging out" their potential effect on our final
coordinates.
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